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Abstract -- This study presents the Ant Colony System (ACS) 

algorithms for optimization of power systems planning. The 
developed ACS algorithms formulate complex problems as 
combinatorial optimization problems. They are distributed 
algorithms composed by a set of cooperating artificial agents, 
called ants, which cooperate to find an optimum solution of the 
combinatorial problems. A pheromone matrix that plays the role 
of global memory provides the cooperation between ants. The 
study consists of mapping the solution space, expressed by an 
objective function of the combinatorial problems on the space of 
control variables (Ant System (AS)-graph), where ants walk. In 
this study an ACS algorithm is applied to the constrained load 
flow (CLF) problem on IEEE 14-bus test system and 136 bus 
system. The results are compared with those given by the 
probabilistic CLF and the reinforcement learning (RL) methods, 
demonstrating the superiority and flexibility of the ACS 
algorithm. Moreover, ACS algorithm is applied to the reactive 
power control problem on the IEEE 14-bus test system in order 
to minimize the real power losses subject to operating constraints 
over the whole planning period. Finally, the application of ACS 
algorithm for active/reactive operational planning of power 
systems on IEEE 30-bus test system is presented and results are 
compared to those given by Simulated Annealing (SA), exhibiting 
superior performance. 

 
Index Terms -- Ant Colony System (ACS), combinatorial 

optimization, constrained load flow, reactive power control, 
active/reactive operational planning. 

I.  INTRODUCTION 

T HERE are large number of different combinatorial 
optimization problems facing electricity utilities. The 

deregulation of electricity supply industry world-wide adds 
ever growing motivations to develop new optimization 
algorithms. Therefore best strategies are designed for most 
effectiveness utilizing the asset under increasing commercial 
pressure [1]-[2]. Various algorithmic and heuristic approaches 
[3]-[4] have been adopted or investigated by power engineers. 
These include the lambda-iteration method, gradient method, 
Lagrangian relaxation, benders decomposition, interior point 
method, linear/nonlinear programming and dynamic 
programming, etc. More recently heuristic techniques such as 

artificial neural networks, simulated annealing, tabu-search, 
reinforcement learning and evolutionary computing have also 
been intensively investigated. In particular, for the last fifteen 
years there has been a growing interest in algorithms inspired 
by the observation of the natural process and behavior of 
natural creatures, such as the Inheritance of Cultural among 
Human Generations, Quantum Mechanics Computing, Particle 
Swarm Optimization (PSO) and Ant Colony Systems (ACS) 
to help solve complex problems. 

Among them the last has been proofed that it handles 
successfully various combinatorial complex problems. Dorigo 
has proposed the first ACS in his Ph.D. thesis [5]. The ACS 
method belongs to biologically inspired heuristics (meta-
heuristics) methods. Real ants are capable of finding the 
shortest path from food source to their nest, without using 
visual cues, but by exploiting pheromone information. While 
walking, real ants deposit pheromone trails on the ground and 
follow pheromone previously deposited by other ants. For one 
ant, the path is chosen according to the quantity of 
pheromone. Furthermore, this chemical substance has a 
decreasing action over time, and the quantity left by one ant 
depends on the amount food found and the number of ants 
using this trail [6]. This behavior has inspired the ACS 
algorithm in which a set of artificial ants cooperate in solving 
a problem by exchanging information via pheromone 
deposited on a graph.  

Ant Colony Systems (ACS) algorithms have recently been 
introduced as powerful tools to solve the order based 
problems such as quadratic assignment problem [6],[7] and 
traveling salesman problem (TSP) [8]-[10] and other real-
world problems, such as the web usage mining [11], optimal 
reconfiguration of distribution systems [12], optimal 
placement of capacitors in distribution systems [13], efficient 
combinational circuit synthesis [14]. In power systems the 
ACS has been applied to solve scheduling problems including 
the unit commitment and economic dispatch problems [15]-
[24], optimum switch relocation and network reconfiguration 
problems for distribution systems [25]-[27] and planning 
problems [28]-[30]. For most of these applications, the results 
show that the ACS-based approach can outperform other 
heuristic methods.                                                            
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the combinatorial optimization problems faced by the power 
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tackled by the probabilistic CLF formulation [31]. The method 
[30] takes into account load uncertainties and generating unit 
unavailability modeled as probability density functions. 
However, this method provides near-optimum off-line control 
settings. Recent research solves the CLF problem by means of 
heuristic reinforcement learning (RL) method [32]-[34]. The 
RL modified the CLF problem as a combinatorial optimization 
problem [35]. In this study, optimal control settings are 
learned by experience adjusting a closed-loop control rule, 
which maps operating states to control actions by means of 
reward values [35]. In this study, the CLF problem is solved 
by means of the ACS algorithm [28]. As an example, the 
settings of control variables (tap-settings, VAr compensation 
blocks, etc.) are combined in order to achieve optimum 
voltage values at the nodes of a power system. In this 
approach, the graph that describes the settings of control 
variables of the CLF problem is mapped on the Ant System 
(AS)-graph, which is the space that the artificial ants will 
walk. Specifically, the objective function of the ACS 
algorithm has similar formulation with the Q-learning [35] 
reward function. The objective function “fires” the transition 
function, which gives the probability for an ant to select an 
edge to walk. In this study, for computational simplicity, the 
transition function considers only the trail intensity for the 
transition probability [5],[25],[35], i.e., more ants choose has 
more probability to be selected [28]. The results are compared 
with those obtained by the probabilistic CLF [31] and the Q-
learning method [35], showing the superiority of the proposed 
ACS algorithm [28].   

b) The reactive power control is formulated as a 
combinatorial optimization problem and calculate using ACS 
algorithm [28]. The most common methods, are: Classical 
methods (such as NLP), have drawbacks in that they don’t 
satisfactorily handle nonconvexities and nonsmoothness such 
as generator’s prohibited operating zones, operating 
constraints of the transmission lines such as thermal limits and 
switchable VAR source constraints. On the contrary, ACS 
algorithm [28] handles satisfactorily previously mentioned 
operating problems and does not require that the objective 
functions and the constraints have to be differentiable and 
continuous. The results are obtained by ACS [28] on the IEEE 
14-bus test system. 

c) Finally, the active/reactive operational planning is solved 
by means of the ACS algorithm [29]. Specifically in this 
study, ACS algorithm [29] aims to determine the optimal 
settings of voltage control variables, such as generator 
outputs, voltages, transformer taps and shunt VAR 
compensation devices, considered as nodes of Ant-System 
(AS) graph. Results are compared to those given by meta-
heuristic technique of Simulated Annealing (SA) [36] for the 
network of IEEE 30-bus test system, exhibiting superior 
performance.  

The study is organized in six sections. Section II describes 
the basic concepts of a general ACS algorithm for 
combinatorial optimization problems. Section III formulates 
the CLF, reactive power control problems and active/reactive 
operational planning while the proposed ACS algorithm for 

handling them is presented in Section IV. In Section V the 
proposed ACS algorithm is applied to CLF and reactive power 
control problems on IEEE 14-bus test system and 136 bus 
system as well as in active/reactive operational planning on 
IEEE 30-bus test system. Finally, in Section VI, general 
conclusions are drawn.  

II.   ACS ALGORITHMS FOR COMBINATORIAL OPTIMIZATION 
PROBLEMS 

ACS algorithms are developed based on the observation of 
foraging behavior of real ants. Although they are almost blind 
animals with very simple individual capacities, they can find 
the shortest route between their nest(s) and a source of food. 
An ant group is based on the principle that using simple 
communication mechanisms is able to find the shortest path 
between any two points. During their trips a chemical trail 
(pheromone) is left on the ground. The pheromone guides 
other ants towards the target point. For one ant, the path is 
chosen according to the quantity of pheromone. The 
pheromone evaporates over time (i.e., it loses quantity if other 
ants lay down no more pheromone). If many ants choose a 
certain path and lay down pheromones, the quantity of the 
trail increases and thus this trail attracts more and more ants. 
In the ACS algorithms, a set of artificial ants walk on a 
construction Ant System graph (AS-graph) following certain 
rules and cooperate in solving a problem by exchanging 
information via pheromone trails deposited on the edges of the 
AS-graph. The crucial part of the ACS algorithms is that each 
artificial ant (ant hereafter) works individually but exchanges 
information implicitly with other ants via the pheromone trails 
which can be accessed and altered by all eligible ants. All ants 
can take into consideration their own and other ants’ 
experiences when they decide their future movement so that 
they act together in a colony to achieve an optimal solution.  

ACS algorithms are suitable for solving combinatorial 
optimization problems ( ), ,S fζ = Ω  which can be defined as 
[1]:  

A set of discrete variables Xi with values xi ∈ Di = {di
1,di

2 
,…, di

|Di| }, i = 1,2,…,n, where i
jd , 1 ij D≤ ≤  is a candidate 

solution component for variable Xi, the subscript |Di| indicates 
the number of candidate components for the variable Xi and n 
is the number of discrete variables involved in the problem; A 
set Ω of constraints among the variables; An objective 
function 1 2: ... nf D D D R× × → , where R represents the set of 
real numbers, to be minimized. The set of all feasible 
solutions is [1]:  

 
1 1 2, 2{ {( , ), ( ),..., ( )} |

, [1, ], . . }
n n

i i

S s X x X x X x
x D i n s t

= =

∈ ∈ Ω
                   (1) 

 
Each element in S can be seen as a candidate solution and S 

is called the search space. In order to solve the combinatorial 
optimization problem , a corresponding 
construction graph, in which the space that the artificial ants 
will walk, should be mapped on according to the problem 

( , ,S fζ = )Ω
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under consideration. It has been experienced that finding an 
appropriate graph representation for the problem to be solved 
is one of the most difficult (and ad hoc) tasks to face when 
applying the ACS algorithms to solve real-world problems 
[1].  
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( ) ( )
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 ⋅       ∈ ⋅   =     



∑  (2)

     The pheromone trails for all connections (edges) in the 
construction AS-graph are initialized to be a pre-determined 
value. Each ant in the colony randomly sets its initial solution, 
si, j=1,2, …, M, within the given feasible region before the 
ants start to construct their solutions. Based on their fitness, 
ants deposit pheromone on the edges composing their solution 
paths. The structure of a general ACS algorithm is shown in 
the following major steps [1] (Table I): 

where γ(r,s) represents the pheromone trail associated to the 
connection between nodes r and s, η(r,s) a heuristic value, 
called the desirability of adding connection  or node r to 
the k-th ant’s partial solution and can be determined according 
to the optimization problem under consideration.  

,r sl

( , )= - Fr sη µ ∆  and F∆  = original total cost – new total cost. 

 is the feasible neighbor components of the k-th ant at the 
node r with respect to the problem constraints Ω, α (0<

k
rN

α <1) 
is the pheromone decay parameter and β is a parameter which 
determines the relative importance of pheromone versus the 
distance (β > 0).  

 

TABLE I 
GENERAL ACS ALGORITHM  

1. Initialize pheromone trails and place M ants on the nodes of AS graph 
2. Repeat until system convergence 
2.1 For i = 1 to n 
2.1.1 For j = 1 to M 
2.1.1.1 Choose the node s to move to, according to the transition probability (2) 
2.1.1.2 Move the ant-k to the node s 
2.2 Update the pheromone using the pheromone update formula (3) 

Step 5: Pheromone updating: Once all ants complete their 
solutions after n steps, the pheromone trails are updated by:  
 

( ) ( ) ( ) (
1

, 1 , ,
m

k
k

r s r s r sγ α γ γ
=

= − ⋅ + ∆∑ )        (3) 
  

  
where: ( ),k r sγ∆ is the quantity of pheromone deposited on 
the edge between the nodes r and s during the iteration, i.e., n 
moves. 

 
Step 1: Initialize A(t): The decision variables to be 

optimized, Xi, i = 1,2,…n, are identified and their eligible 
values are determined to form the feasible region 
(construction graph). A colony of M ants is generated. Each 
ant gives an initial solution sj, j= 1,2,…M within the feasible 
region. The maximum iteration number in each run is M and 
the maximum construction step number in each iteration is n. 
The pheromone trails for all the connections in the graph are 
initialized to be a pre-determined value. The termination 
criteria of each run and each iteration are respectively set up. 
The objective/fitness function is defined in terms of the 
decision variables.  

 Thereafter, many other ACS algorithms based on 
previously described general version have been published for 
handling combinatorial optimization problems. The basic of 
them are briefly described [37]:   

• ANTS: According to [38] the term ANTS derives from the 
fact that the proposed algorithm can be interpreted as an 
Approximate Nondeterministic Tree Search since it 
shares several elements with an approximated branch and 
bound procedure. The most significant modification is the 
use of lower bounds on the solution cost of the 
completion of a partial solution to compute dynamically 
changing heuristic values ηij. Further modifications are 
the use of a different action choice rule and a modified 
trail update rule [38].  

Step 2: Evaluate A(t): The fitness of all ants are evaluated 
based on their initial solutions.  

Step 3: Alter the pheromone trails: Each ant adds 
pheromone, consisting of its solution in proportion to its 
fitness to the path. 

• MMAS: Max-Min Ant System [37] is an improvement 
over general ACS presenting three following 
modification: First, to exploit the best solutions found in 
an iteration, after each iteration only one ant (global best 
or iteration best ant) is allowed to add pheromone. 
Second, to avoid search stagnation, the allowed range of 
the pheromone trail strengths is limited. Third, the 
pheromone trails are initialized to the upper trail limit, 
which causes a higher exploitation at the start of the 
algorithm. In a following section we present these 
modifications in more detail.      

 Step 4: Send ants A(t): According to the fitness function, 
ants’ performance will be weighed in terms of their fitness 
values which influences the quantity of pheromone deposited 
on the trails that they have passed. At the beginning of each 
iteration, all ants are located on their initial positions on the 
graph. Each ant chooses the next node to move by taking into 
account two parameters: the desirability of the nodes and the 
pheromone trails previously deposited by other ants. In this 
operation, each ant selects its next move using tournament 
selection based on the above two parameters. The k-th ant 
allocated at the node r decides to move to the node s on the 
basis of probability , which is shown as follows: ( , )kp r s • Fast Ant system (FANT): FANT [39] is an improved 

version of ANTS. In FANT solutions are constructed in  
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 the same way as in MMAS. FANT differs from MMAS 
in the number of ants used and the management of 
pheromone trails. 

where Pl is the real power losses at line-l, Nl is the number of 
transmission lines, and X and U are the state and control 
vectors, respectively. 

• Ant-Q: Ant-Q algorithm [40] exploits connections of 
ACS algorithm with Q-learning [35]. Ant-Q differs in 
three main aspects from general ACS. First, Ant-Q uses a 
more aggressive action choice rule than general ACS. 
Second, the pheromone is added only to trails belonging 
to the global-best solution. Third, each time an ant uses a 
trail to move from point to point it removes some 
pheromone from this trail.     

Specifically, the vector of state or dependent variables, X, 
consists of load bus voltages VL, generator reactive power 
outputs QG, and transmission line loadings Sl. Hence, X can be 
expressed as: 
 

1 2 1 2 1 2
, ... , , ... , , ...

Nd Ng NL

T
L L L G G G L L LX V V V Q Q Q S S S =      (6) 

 
• HAS: Although Hybrid Ant System algorithm [41] is 

inspired from FANT, it has a major difference that the 
pheromone trails are not used to construct new solutions 
but to modify the current solutions.  

The vector of control variables, U, consists of generator 
voltages VG, transformer tap settings T, and shunt VAR 
compensations QC. Hence, U can be expressed as: 

 

1 2 1 2 1 2, ... , , ... , , ...
Ng NC

T
G G G C C C NTU V V V Q Q Q T T T =                (7) III.  COMBINATORIAL OPTIMIZATION PROBLEMS OF POWER 

SYSTEMS  
The formulation of power systems’ problems handling as 

combinatorial optimizations by ACS algorithms are following: The constraints represent the system operating constraints 
as follows:  

A. Constrained Load Flow  Generation constraints: Generator voltages VG and reactive 
power outputs QG are restricted by their limits as follows: The load flow problem can be expressed by the next two 

sets of non-linear equations:  
 min max    

i i iG G GV V V i = 1,2,...,NG≤ ≤          (8) 
( , )
( , )

Y g X U
Z h X U

=
=

                                              (4) min max    
i i iG G GQ Q Q i = 1,2,...,NG≤ ≤          (9) 

  
where NG is the number of generators. where 

Y:  vector of nodal power injections Switchable VAR source constraints: Switchable VAR 
compensations QC are restricted by their limits as follows: Z: vector of constrained variables (power flows, 

reactive powers of PV buses, etc.)  
X: state vector (voltage angles and magnitudes) min max    

i i iC C CQ Q Q i = 1,2,...,NC≤ ≤          (10) 
U: control vector (transformer tap settings, shunt 

compensation, voltage and power at PV buses, etc.)  
where NC is the number of switchable VAR sources.  

The objective of the constrained load flow is to maintain 
some or all elements of X and Z vectors within given 
operating limits under the uncertainty of generating units’ 
availabilities and load uncertainties. This can be achieved by 
selecting appropriate (robust) values of control variables 
under random variations of loads and generations (noise 
factors) within their operating range. In Section V of this 
paper a technique to maintain constrained variables within 
operating limits over the whole planning period using the 
ACS algorithm is proposed. 

Transformer constraints: Transformer tap settings T are 
bounded as follows:  

 
min max    i i iT T T i = 1,2...,NT≤ ≤           (11) 

 
where NT is the number of transformers. 

Security constraints: These include the constraints of load 
voltages at load buses VL and transmission line loadings Sl as 
follows:   

  
B. Reactive Power Control  min max    

i i iL L LV V V i = 1,2...,Nd≤ ≤                                   (12) 
The reactive power control is to optimize the steady state 

performance of a power system in terms of one or more 
objective functions while satisfying several equality and 
inequality constraints. The problem can be generally 
formulated as follows. The objective is to minimize the real 
power losses in transmission lines that can be expressed as: 

max    
i il lS S i = 1,2...,Nl≤                                               (13) 

 
where Nd and Nl are the number of nodes and lines of power 
system, respectively. 
 

 C. Active/Reactive Operational Planning 

1

(  )
Nl

Loss l
l

P X, U P
=

= ∑                                                (5) Modern power systems have many operations such as the 
dispatch of active power and others known as ancillary 
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Then, the pheromone trail on coupling (r, s) is updated 
according to: 

services. Active/reactive operational planning belongs to this 
category of services. It allocates Volt control and reactive 
support in accordance with open market mechanisms [36]. 
The problem of active/reactive operational planning is 
formulated as an optimization problem with objective function 
expressed by the following equation for comparison reasons 
with Simulated Annealing (SA) technique [36]: 

 
( , ) ( , ) (r,s)kr s r sγ α γ γ= ⋅ + ∆                               (18) 

 
where α with 0<α<1, is the persistence of the pheromone trail, 
so that (1-α) to represent the evaporation and ∆  is the 
amount of pheromone that ant k puts on the trail (r, s).  The 
pheromone update  reflects the desirability of the 
trail (r, s), such as shorter distance, better performance, etc., 
depending on the application problem.  Since the best tour is 
unknown initially, an ant needs to select a trail randomly, and 
deposits pheromone in the trail, where the amount of 
pheromone will depend upon the pheromone update rule (18).  
The randomness implies that pheromone is deposited in all 
possible trails, not just in the best trail. However, the trail with 
favorable update increases the pheromone intensity more than 
other trails.  

( , )k r sγ

( , )k r sγ∆

 

( )

( )

max

1 1

min
max

1 1

( ) ( )

( ) 1 ( )

Ng Nd
t t t
i gi d d

i d

tNd Nl
jt

d d
d j j

f C P V V p V

I
V V p V p

I

= =

= =

= + − ⋅

 
− ⋅ + − ⋅  

 

∑ ∑

∑ ∑ I

+

      (14) 

 
subject to the mild constraints expressed by (4), (8)-(13) 

Here,  is the active power cost of unit-i at time-t, t
iC t

giP  is 
active power generation of unit-i at time-t, Ng is the total 
number of units, Nd is the total number of buses, Nl is the set 
of network branches, V are the limits of voltage at 

bus-d, and 

min max,  d dV
max
jI is the thermal limit of the transmission line-j. 

After all ants have completed their tours, global pheromone 
is updated in the trails of the ant with the best tour executed. 
In the following paragraphs the MMAS algorithm is extended 
and modified to solve the CLF and reactive power control 
problems as well as the active/reactive operational planning, 
farther called simply combinatorial optimization problems. 

The penalty factors p(V) and p(I) enforce the voltage and 
thermal limits: 

max min40   if   
( )

0     else

t t
d d d dV V or V V

p V
 > <= 









      (15) 

                         

The settings of control variables (tap-settings, VAr 
compensation blocks, etc.) are combined in order to achieve 
the power system constraints. In this approach, the graph that 
describes the settings of control variables of the combinatorial 
optimization problems is mapped on the AS-graph, which is 
the space that the artificial ants will walk. Fig. 1 shows the 
AS-graph (searching space) for the combinatorial optimization 
problems. All possible candidate discrete settings for a control 
variable are represented by the states r of the AS-graph (r = 1, 
2,…, m). The control variables are represented by the stages i 
(i = 1, 2,..., n), where n is the number of the control variables.  
Each ant starts its tour at the home colony and stops at the 
destination. The proposed ACS algorithm proceeds as follows: 

 
max300   if 

( )
0       else

t
j jI I

p I
 >= 
  

            (16)     

IV.  MMAS ALGORITHM FOR THE COMBINATORIAL 
OPTIMIZATION PROBLEMS OF POWER SYSTEMS 

Among state-of-the-art ACS algorithms the most popular 
one which handles successfully plethora of combinatorial 
optimization problems is the Max-Min AS (MMAS) algorithm 
[37]. In this study we improve the MMAS version in order to 
handle the combinatorial optimization problems of power 
systems. The ants simulate the transitions from one point r to 
another point s, according to the proposed MMAS algorithm 
[37] as follows:  

An operating point comprising a load and generation 
pattern (operating point of the whole planning period of the 
system) is randomly created. For this operating point, first of 
all AS graph is created. All paths receive an amount of 
pheromone that corresponds to an estimation of the best 
solution so that ants test all paths in the initial iterations. 
Therefore, ACS-algorithm achieves the best exploration of 
AS-graph in the earlier iterations of convergence and better 
exploitation at the latest. 

If the ant k is at point r, has the next point been visited? The 
ant k maintains a tabu list  in memory that defines the set 
of points still to be visited when it is at point r. The ant k 
chooses to go from point r to point s during a tour with a 
probability given by [37]: 

k
rN

Then, ant k chooses the next states to go to in accordance 
with the transition probability calculated by (17). When the 
ant k moves from one stage to the next, the state of each stage 
will be recorded in a location list kJ . After the tour of ant k is 
completed, its location list is used to compute its current 
solution. Then the pheromone trails composed by nodes of 
location list kJ  are updated in accordance with (18) (local 
update). For the purpose of this research, the pheromone 
update  is chosen as: ( , )r skγ∆

 
( , )( , )      s, 

( , )
k
r

l

r sp r s N
r

γ
γ

=
∑

∈                              (17) 

 
where matrix γ(r, s) represents the amount of the pheromone 
trail, pheromone intensity, between points r and s.  
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where R is a large positive constant.  Both Q in (21) and R are 
arbitrarily large numbers.  Empirical tests have shown that the 
ACS-algorithm converges faster when Q is almost equal to R. 

 

1( , )k r s
Q f

γ∆ =
⋅

                                         (19) 
 

TABLE II where f is the objective function, and Q is a large positive 
constant. ACS ALGORITHM IN COMBINATORIAL OPTIMIZATION PROBLEMS 

OF POWER SYSTEMS 

 
1. Create the AS-graph (search space) that represents the discrete settings 
(states) of the control variables (stages). 
2. Insert the pheromone matrix γ(m,n) according to nodes of AS-graph, 
where n is the number of stages and m the number of states. 
3. Initialize the pheromone matrix γ(m,n) = γ0(m,n) = τmax  (in (23), in this 
case fgbest is an initial estimation of the best solution). 
4. Repeat for a given number of operating points over the whole planning 
period. 
4.1 Repeat until the system convergence or number of iterations is less than a 
given maximum number. 
4.1.1 Place randomly M ants on the states of the 1st stage (i = 1). 
4.1.2 For k=1 to M 
4.1.2.1 For i = 2 to n 
4.1.2.1.1 When the ant-k has selected the r-state of the (i-1)-stage, it 
currently chooses the s-state of the (i)-stage in which will move according to 
transition rule (17). 
4.1.2.1.2 Move the ant-k to s-state of i–stage.  
4.1.2.1.3 Record s to Jk, and set r =s. 
4.1.3 Run power flow for each ant. 
4.1.4 Calculate the appropriate objective function ((20) in case of CLF, (14) 
in case of active/reactive operational planning, (5) in case of reactive power 
control) for each ant. 
4.1.5 Update the pheromone of (r,s)-trails for each ant, using the local 
pheromone update formulae (18), (19). 
4.1.6 Update the pheromone of (r,s)-trails belonging tο best ant tour (fbest), 
using the pheromone update formula (21). 
4.1.7 In order to avoid the ants stagnations, enforce the limits (22)-(24). 
4.2 In the case of CLF and reactive power control problems enforce each of 
the best control settings over the whole planning period and calculate (25). 
5.  In the case of CLF and reactive power control problems choose as a 
greedy-optimum control setting the one that minimizes (25). 

 
 
Fig. 1. Search space for the combinatorial optimization problems. 
 
       Specially, application of the ACS algorithm to the CLF 
problem is linked to the choice of an objective function f, such 
as the limits of the constrained variables to be satisfied for the 
whole planning period. An enforced empirical strategy is to 
consider the variations of constrained variables close to the 
means of their operating intervals. The objective function f is 
computed by the average of all constrained variables, 
normalized in the interval [0, 1], as follows: 
 

max min

1 max min

21   
n

j j j

j j j

z z z
f

n z z=

− −
= ⋅

−∑                                  (20) 
 

 
where n expresses the number of constrained variables, jz  the 
value of j-th constrained variable, and (  are its 
lower and upper limits, respectively. 

min   ,  maxj jz z )

b) To avoid search stagnation (the situation where all the 
ants follow the same path, that is, they construct the same 
solution [37]), the allowed range of the pheromone trail 
strengths is limited to:  

 
 It must be noticed that f = - r, where r is the immediate 

rewards used by the Q-learning algorithm in CLF problem 
[35]. The objective function f has this formulation in order the 
results provided by the ACS and the Q-learning algorithms to 
be compared. 

min min

max max

    if  ( , )
 ( , )

    if  ( , )
r s

r s
r s

τ γ τ
γ

τ γ τ
≤ 

=  ≥ 
        (22) 

For our study the limits are chosen as: 

max
1

 gbestf
τ

α
=

⋅
                                                  (23) In order to exploit the iteration in finding the best solution, 

the next two steps are considered: 
 

a) When all ants complete their tours, load flow is run and 
the objective function is calculated for each run. Then, the 
pheromone trails (r,s) of the best ant tour (ant with minimum 
objective function) is updated (global update) as: 

where fgbest is the global best solution (best over the whole past 
iterations), and 
  

max
min 2M

τ
τ =                                            (24) 

( , ) ( , )          ,   k
best

best

Rr s r s r s J
f

γ α γ= ⋅ + ∈                    (21)  
where M is the number of ants. 

The procedure is repeated for a large number of operating 
states covering the whole planning period. Once we have the 
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In this study, the following parameters are chosen: M = 
100, n = 4, m = 16, Q = R = 1,000,000 and the initial best 
solution is estimated at 0.0001. The parameter α from our 
experience shows that any value in the range [0.88   0.999] 
works well. In this paper it is chosen as α = 0.9865. In this 
study, the search will be terminated if one of the following 
criteria is satisfied: a) the number of iterations since the last 
change of the best solution is greater than 1000 iterations, or 
b) the number of iterations reaches to 3000 iterations. The 
ACS algorithm can be implemented in a large number of load 
combinations (operating points) selected over the whole 
planning period. 

set of optimal control settings for a large number of operating 
points, the one that minimizes the sum of multi-objective 
function (mtf) over the whole planning period is defined as a 
greedy-optimum control setting: 

 

over whole planning period

min{  of objective functions}

      = min

mtf total

f

=


  
 

∑
                    (25) 

 
Table II shows the execution steps of the MMAS algorithm 

applied to the CLF, reactive power control problems and 
active/reactive operational planning.  

TABLE III 
LIMITS AND DISCRETIZATION OF ACTIONS AND LIMITS OF 

CONSTRAINED VARIABLES V.  RESULTS 
 

A. ACS applied to CLF problem [28]  
The proposed ACS algorithm is applied to adjust reactive 

control variables in the IEEE 14-bus test system shown in Fig. 
2. The system consists of the slack bus (node 1), three PV 
(nodes 2, 3 and 6), ten PQ buses and twenty branches. It has 
been used in many probabilistic studies. The network data and 
load probabilistic data are the same as used in [31]. They 
comprise six discrete distributions for the active load (at nodes 
3, 6, 9, 10, 11 and 14), four discrete distributions for the 
reactive load (at nodes 9, 10, 11 and 14), with 3 to 5 impulses 
each and 8 normal distributions for active and reactive loads at 
the remaining buses. The total installed capacity is equal to 
4.9 p.u. and comprises 14 capacitor banks at node 1, 4 banks 
at node 2, 2 banks at node 3 and 2 banks at node 6. The 
voltage at all PV buses is taken equal to 1.0 p.u. and the slack 
bus voltage equal to 1.02 p.u. A fixed network topology is 
assumed. The control variables comprise all transformer taps 
(t) and reactive compensation (b) at bus 9 (Fig. 2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Control Actions Umin Umax Step 
t56 0.90 1.05 0.01 
t49 0.90 1.05 0.01 
t47 0.90 1.05 0.01 
b9 0.00 0.24 0.03 

Constrained Variables Wmin Wmax 
Qg2 0.00 0.30 
Qg3 0.00 0.70 
Qg6 0.00 0.45 
T23 0.00 0.75 
T56 0.00 0.50 
V4 0.96 1.05 
V5 0.96 1.05 
V7 0.96 1.05 
V8 0.96 1.05 
V9 0.96 1.05 

V10 0.96 1.05 
V11 0.96 1.05 
V12 0.96 1.05 
V13 0.96 1.05 
V14 0.96 1.05 

 The upper part of Table III shows the limits of the control 
variables Umin and Umax and the discrete steps in variation.  
The transformer taps (t56, t49, and t47) are in 16 steps, while 
the reactive compensation (b9) is in 9 steps.  Therefore, the 
last step of b9 (b9 = 0.24) is repeated for the next 7 steps, for 
steps 10 through 16.  This makes the pheromone matrix γ(m,n) 
of the AS-graph well defined for all stages and states. In the 
lower part of Table III the upper and lower limits of all 
constrained variables Wmax and Wmin are shown. 

In this study the algorithm learns the optimum control 
settings for each of 41 operating points selected from the 
whole planning period. These full correlated operating points 
are sampled uniformly from the curves of normal and discrete 
distribution probabilities as follows: 

  
3Load step = 100%
20

k σµ ± × ⋅ 
 

         (26) 

  
 where k = 0, 1, 2, 3, …, 20. The µ and σ are the average values 

and the standard deviations for normal distributions of loads 
given in [42]. The µ and σ for the discrete distributions of 
loads are calculated using the formulae given by [43]. 

 

Performance of the ACS algorithm is shown in Figs. 3a, 3b, 
and 3c depicting the obtained values of objective function (20) 
during the ACS procedure for the nominal, heavy and light 
load, respectively. The nominal load corresponds to the mean 
values of the load. The heavy and light load correspond to the 
1% confidence limit that all load values are lower and higher 
than these values, respectively. The Figs. 3a-3c show the 
convergence of ACS algorithm in a minimum value of (20), 
achieving the optimum control settings for each of the 3  

Fig. 2.  Line diagram of the IEEE 14-bus system. 
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operating points corresponding to the heavy, light and 
nominal load. 

 

 
(a) 

 

 (b) 
 

 (c) 
 
Fig. 3.  Performance of ACS algorithm in the (a) nominal, (b) heavy, and (c) 
light loads. 

 
Among the 41 optimal control settings, the greedy-optimum 

control settings are those that provide the minimum total 
function (25). Tests have shown that the calculation of (25) in 
the above 3 operating points is sufficient to provide the 
minimum total function (mtf). Results on IEEE 14-bus show 
that the greedy-optimum control settings that achieve the mtf 
(10) over the whole planning period is the optimal control 
settings obtained for the nominal load (Fig 3a). In this case, 
convergence of the ACS algorithm took 1,730 iterations. 
Table IV shows the mtf (25) is calculated at 0.732, the greedy-
optimum control settings and the operating space of 
constrained variables, when these settings are enforced over 
the whole planning period. It can be seen that even when 
applying the greedy-optimum control settings, reactive 
production at node 2 (Qg2) violates its limits. In the Table IV 
these results are also compared to the results of the Q-learning 
(RL) [35] and the probabilistic CLF method [31], obtained for 
the same network. The Q-learning algorithm [35] provides 

slightly worse results, since Qg2 violates its limits and the 
voltage at node 14 violates its lower limit too. The absolute 
value of maximum total reward (mtr) [35] in this case was 
calculated at 0.804, which is greater than the corresponding 
index of the ACS algorithm (mtf = 0.732). The Q-learning 
algorithm [35] took about 38,800 iterations to find the greedy-
optimum control settings.  

 
TABLE IV 

COMPARISON OF RESULTS BETWEEN ACS, RL AND PROBABILISTIC 
LOAD FLOW ON THE IEEE 14-BUS SYSTEM 

 

 

ACS  
Algorithm 

Q-Learning  
Algorithm 

Probabilistic Load 
Flow 

mtf = 0.732 mtr = -0.804 - 
Contr
Varib. 

Optimal 
Settings 

Greedy-Optimal 
Settings (a*) 

Optimal  
Settings 

t56 1.01 1.03 0.94 
t49 0.91 0.97 0.97 
t47 0.99 0.90 0.98 
b9 0.18 0.12 0.12 

Constr
. 

Varib. 

Wmin Wmax Wmin Wmax Wmin Wmax 

Qg2 -0.5508* -0.0795*  -0.5250* -0.0527* 0.2069 0.3160* 
Qg3 0.1554 0.5978 0.1751 0.6183 0.6420 0.6812 
Qg6 0.0688 0.3606 0.0891 0.3787 0.3065 0.4161 
T23 0.2273 0.6847 0.2284 0.6868 0.7223 0.7799* 
T56 0.0731 0.2920 0.1675 0.4528 0.4144 0.4931 
V4 0.9777 0.9984 0.9742 0.9951 0.9654 0.9731 
V5 0.9876 1.0042 0.9864 1.0030 0.9682 0.9744 
V7 0.9864 1.0235 0.9901 1.0274 0.9710 0.9857 
V8 0.9864 1.0235 0.9901 1.0274 0.9710 0.9833 
V9 0.9871 1.0316 0.9840 1.0284 0.9656 0.9833 

V10 0.9819 1.0237 0.9775 1.0193 0.9644 0.9803 
V11 0.9903 1.0139 0.9831 1.0067 0.9828 0.9912 
V12 0.9899 1.0011 0.9802 0.9915 0.9907 0.9936 
V13 0.9818 0.9994 0.9725 0.9903 0.9832 0.9878 
V14 0.9600 1.0036   0.9541* 0.9977 0.9508* 0.9663 

 
 
In the case of probabilistic CLF [31] the upper limit of 

reactive production at node 2 (Qg2) and the lower limit of 
voltage at node 14 as well as the upper limit of the apparent 
flow (T23) in line 2-3 are violated. 

One way of enforcing violated limits of Qg2 is to relax the 
constant voltage limit at node 2, considering it as a PQ bus 
and allowing the voltages at nodes 6 and 1 to be set at 1.021 
p.u. and 1.03 p.u., respectively [31]. Rerunning the ACS 
algorithm under these new considerations the best solutions 
are provided as shown in Figs. 4a, 4b and 4c, in the nominal, 
heavy and light loads, respectively. Among them the greedy-
optimum control settings that achieve the mtf (25) over the 
whole planning period are once more the optimal control 
settings obtained for the nominal load (Fig. 4a). In this case, 
convergence of the ACS algorithm took 2,645 iterations. 
Table V shows the mtf (25) calculated at 0.557, the greedy 
optimum control settings and the operating limits of 
constrained variables when these settings are enforced over 
the whole planning period. In Table V the greedy-optimum 
control settings are also compared to the results of the Q-
learning [35] and the probabilistic CLF method [31]. In the 
case of Q-learning algorithm [35], the corresponding absolute 
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value (mtr) was calculated at 0.565, which is almost equal to 
mtf, (mtf = 0.557). It must be underscored that the Q-learning 
algorithm took about 42,800 iterations to find the greedy-
optimum control settings [35]. 
 

 
(a) 

 

 
(b) 

  

 
(c) 

 
Fig. 4.  Performance of ACS algorithm when Qg2 is Cutoff in the (a) nominal, 
(b) heavy and (c) light loads. 

 

The ACS and Q-learning algorithms provide the optimal 
results, rather than the near-optimal results given by the 
probabilistic CLF method [31], since all constraints including 
the upper limit of apparent flow (T23) on line 2-3 are 
satisfied. 

Table VI shows the optimal settings proposed by ACS 
algorithm at 5 operating points (26) corresponding to the 
average load values (k=0) and the two adjacent pairs (k=±1, 
±2) together with the maximum total rewards of the optimal 
actions.  

A key advantage of the proposed ACS algorithm is its 
flexibility in providing control actions that can satisfy 
additional criteria and thus solve multi-criteria optimization 
problems. For example if the cost of VAr compensation 

should be taken into account, then as greedy-optimal action, 
the action that minimizes compensation at node 9 could be 
chosen. 

 

TABLE V 
COMPARISON OF RESULTS BETWEEN ACS, RL AND PROBABILISTIC 

LOAD FLOW ON THE IEEE 14-BUS SYSTEM 

ACS 
Algorithm 

Q-Learning 
Algorithm 

Probabilistic 
Load Flow 

mtf = 0.557 mtr = -0.565 - 
Contr 
Varib 

Optimal 
Settings 

Greedy-Optimal 
Settings (a*) 

Optimal 
Settings 

t56 0.99 0.99 0.94 
t49 0.90 0.91 0.97 
t47 0.99 0.97 0.98 
B9 0.06 0.03 0.12 
V6 1.021 1.021 1.021 
V1 1.030 1.030 1.030 

Const 
Varib 

Wmin Wmax Wmin Wmax Wmin Wmax 

Qg3 0.0132 0.5475 0.0100 0.5595 0.5120 0.5695 
Qg6 0.0434 0.3770 0.0462 0.3794 0.3066 0.4214 
T23 0.2182 0.6758 0.2180 0.6767 0.7063 0.7665* 
T56 0.0332 0.2577 0.0330 0.2569 0.4126 0.4936 
V4 0.9788 1.0060 0.9772 1.0044 0.9726 0.9822 
V5 0.9898 1.0128 0.9888 1.0118 0.9763 0.9843 
V7 0.9822 1.0241 0.9891 1.0311 0.9797 0.9954 
V8 0.9822 1.0241 0.9891 1.0311 0.9797 0.9954 
V9 0.9801 1.0284 0.9807 1.0289 0.9749 0.9933 
V10 0.9780 1.0230 0.9786 1.0235 0.9737 0.9903 
V11 0.9938 1.0191 0.9940 1.0192 0.9926 1.0013 
V12 0.9997 1.0112 0.9998 1.0112 1.0008 1.0038 
V13 0.9904 1.0086 0.9905 1.0086 0.9932 0.9979 
V14 0.9600 1.0058 0.9603 1.0062 0.9605 0.9765 

 
 
 

TABLE VI 
OPTIMAL ACTIONS OVER THE WHOLE PLANNING PERIOD  

(CUTOFF QG2) 
 

 

Optimal settings k Operating points 
t56 t49 t47 b9 mtf 

- 2 µ – 6σ/20 1.01 0.94 0.93 0.00 0.565 
- 1 µ – 3σ/20 0.99 0.92 0.93 0.00 0.558 
  0 µ 0.99 0.90 0.99 0.06 0.557 
  1 µ + 3σ/20 0.99 0.90 0.99 0.06 0.559 
  2 µ  + 6σ/20 0.99 0.90 1.01 0.06 0.563 

 

Table VII shows the operating space of constrained 
variables when the new optimal settings are enforced over the 
whole planning period. The convergence of ACS algorithm to 
optimal actions in the case of minimum VAr compensation 
corresponding to operating points k = -2 and k = -1 (Table 
VI), takes 2563 and 2021 iterations, respectively. These 
results show that the ACS algorithm provides control settings 
for the whole planning period and can be more effective than 
the probabilistic CLF method [31] since it satisfies constraints 
with minimum VAr compensation.  
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TABLE VII 
OPERATING SPACE OF CONSTRAINED VARIABLES WHEN THE 

CRITERION IS MINIMUM VAR COMPENSATION AT BUS 9 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

The ACS algorithm is also applied to the CLF problem for 
the 136-bus system [44],[45]. This system consists of 136 
buses (33 PV and 103 load buses), 199 lines, 24 transformers 
and 17 reactive compensations. In this study the ACS 
algorithm learns the optimum control settings for each of 41 
operating points selected from the whole planning period 
similarly to the IEEE 14-bus case [31]. The control variables 
selected comprise voltages at PV buses 4 and 21 (discrete 
variations 0.99 to 1.02, in step 0.01), taps at transformers 28, 
41 and 176 (discrete variation of 0.92 to 1.00, in steps of 0.02) 
and reactive compensation (b) at buses 3 and 52 (discrete 
variation of 6 blocks). The total number of actions is 
52x53x62= 112,500. The constrained variables include voltages 
at all PQ buses (from 0.96 p.u. to 1.05 p.u.) and 3 apparent 
power-flows at the most heavily loaded lines, 156 and 177 
(upper limit 4.6 p.u.) and 179 (upper limit 3.4 p.u.). The initial 
control settings violate the power flow limits of all the above 
lines and upper limit of the voltages of buses 18, 19 and 23. 
The ACS algorithm learns the greedy-optimal control action 
resulting in the satisfaction of the limits of constrained 
variables over the whole planning period as shown in Table 
VIII. In this case, the agent found the optimum control action 
at the average load values after about 2910 iterations (Fig. 5) 
in contrast to 112,980 iterations of Q-learning algorithm. The 
total computing time is about 8 sec on a 1.4 GHz Pentium-IV 
PC, compared to the 160 sec achieved by Q-learning [35].   

Summarizing, ACS and the Q-learning algorithms provide 
the optimal results, rather than the near-optimal results 
provided by the probabilistic CLF method [31]. A key 
advantage of the proposed ACS algorithm is its flexibility in 
providing control actions that can accommodate additional 
criteria and thus solve multi-criteria optimization problems. 
The main advantage of ACS algorithm in comparison with the 

Q-learning algorithm [35] is the better results in greatly less 
number of iterations.  
 
 

Optimal settings               Actions 
           k = -2         k = -1 

t56             1.01          0.99 
t49             0.94          0.92 
t47             0.93          0.93 
b9             0.00          0.00 
V6             1.021          1.021 
V1             1.03          1.03 

   Constrained  
     Variables 

Wmin Wmax Wmin Wmax

Qg3 0.0179 0.6201 0.0967 0.6377 
Qg6 0.0628 0.4530 0.0871 0.3778 
T23 0.2278 0.6858 0.2289 0.6878 
T56 0.1113 0.2875 0.0556 0.2580 
V4 0.9739 0.9944 0.9709 0.9914 
V5 0.9876 1.0039 0.9837 1.0000 
V7 1.0052 1.0421 1.0062 1.0431 
V8 1.0052 1.0421 1.0062 1.0431 
V9 0.9845 1.0280 0.9876 1.0312 

V10 0.9817 1.0228 0.9843 1.0254 
V11 0.9957 1.0189 0.9970 1.0202 
V12 1.0000 1.0111 1.0003 1.0140 
V13 0.9911 1.0085 0.9915 1.0090 
V14 0.9627 1.0056 0.9647 1.0076 

TABLE VIII 
RESULTS OF ACS AND Q-LEARNING ALGORITHMS  

ON THE 136-BUS SYSTEM REACTIVE POWER CONTROL 
 

 

ACS algorithm Q-Learning 
algorithm 

mtf = 0.628 mtr = -0.640 

 
Control Actions 

Optimal  
Settings 

Greedy-Optimal 
settings (a*) (p.u.) 

V4 1.01 1.00 
V21 0.99 0.99 
t28 0.94 0.92 
t41 0.92 0.92 
t176 0.92 0.92 
b3 0.17 0.15 

b52 0.17 0.17 
Constrained Variables Wmin Wmax Wmin Wmax 

V18  0.990 1.027 0.987 1.021 
V19  0.998 1.029 0.998 1.028 
V23 1.012 1.050 1.010 1.049 
T156 3.986 4.500 3.987 4.500 
T177 3.948 4.501 3.948 4.501 
T179 2.561  3.223 2.675 3.234 

 
 
 
 

 
 
Fig. 5.  Performance of ACS algorithm in the average values of loads of 136-
bus system.  

 
 
 

B. ACS applied to Reactive Power Control [28] 

As another application, ACS algorithm (Table II) can be 
applied to the reactive power control problem for the IEEE 14 
bus system by considering as objective function both the real 
power losses (5) and operating constraints expressed by (8)-
(13) as these are included in (20). The AS-graph updates its 
pheromone by selecting large number of load/generation 
combinations (1000 operating points) over the whole planning 
period. However, these 1000 uncorrelated operating points are 
sampled randomly with normal and discrete distribution 
probabilities of the loads and generations [31]. The control 
variables comprise all transformer taps (t), the reactive 
compensation (b) at bus 9, and the generator voltages of buses 
1 and 6.  

31

K. Y. Lee (Editor), ISAP Tutorial on Intelligent Optimization and Control for Power Systems, Chapter 3, Nov. 6-10, 2005, Arlington, VA



 

 

 

TABLE IX 
RESULTS OF ACS ON THE IEEE 14-BUS SYSTEM WITH POWER 

LOSSES AS OBJECTIVE FUNCTION  
 
 

ACS algorithm 
Power losses over the whole planning period = 

[0.11467, 0.01513] pu  
Control Variables Optimal Settings 

t56 0.98 
t49 0.91 
t47 1.01 
b9 0.09 
V6 1.02 
V1 1.03 

Constraint Variables Wmin Wmax 
Qg3 0.1531 0.5938 
Qg6 0.1483 0.4394 
T23 0.2268 0.6835 
T56 0.1009 0.2837 
V4 0.9784 0.9989 
V5 0.9903 1.0067 
V7 0.9887 1.0255 
V8 0.9887 1.0255 
V9 0.9850 1.0289 
V10 0.9822 1.0235 
V11 0.9959 1.0192 
V12 1.0001 1.0112 
V13 0.9911 1.0086 
V14 0.9631 1.0062 

 
 
Fig. 6.  Greedy-optimum performance of the ACS algorithm in reactive power 
optimization of the IEEE-14 bus system. 
 

C. ACS applied to Active/Reactive Operational Planning [29] 

The proposed ACS algorithm is applied on the 
active/reactive operational planning of IEEE 30-bus test 
system. The line diagram of this network is given in Fig. 7. 
Some modifications in network’s data of IEEE 30-bus test 
system are made in order to be the same with those given in 
[36] for comparison purposes. Specifically, the network 
consists of 4 generators, 41 lines, 4 transformers and 2 
capacitor banks. In the transformer tests, 7 tap positions in 
each transformer were considered. Each position corresponds 
to 0.02 increments within the interval [0.94, 1.06]. The 
available reactive powers of capacitor banks are [0, 7.5, 15, 
22.5, 30] MVAr and they are connected to buses 10 and 24. 
Generator voltages are discretized in 150 steps (step: 0.0006 
pu) within the range of [0.96, 1.05]. Loads were set at the 
values referred in [47], multiplied by a factor of 0.6 (nominal 
load). The increment/decrement accuracy for the generator 
outputs was set to 1MW/0.01 pu.  

 
 
 

Among all operating points the best takes 961 iterations to 
find the optimum control action as shown in Fig. 6. The 
optimal settings and the voltages over the whole planning 
period are shown in Table IX. The real power losses 
calculated over the whole planning period are between 
0.01513 p.u. and 0.11467 p.u., compared to the initial losses 
which were between 0.0843 p.u. and 0.2067 p.u. and those 
given by the probabilistic CLF which were between 0.0242 
p.u. and 0.1387 p.u. Consequently, the results are better than 
the initial and the ones obtained by the probabilistic CLF 
(Table V) in minimizing the real power losses while satisfying 
all operating constraints.  

 
 

 

The total number of load flows is equal to (the number of 
iterations reported) x (the number of ants) for every one of the 
randomly selected operating points. In the case of the greedy-
optimum operating point of the IEEE 14 bus system load flow 
is run 961 x 100 = 96,100 times. Fig 6, like the rest of the 
figures in the paper, shows the best solution out of 100 ants at 
each iteration. However, in terms of computing time for 100 
ants the 961 iterations are still too much. The number of 
iterations can be further reduced by determining the optimum 
parameters (M, Q, R, a) in the ACS algorithm. This can be 
achieved by incorporating any of the modern evolutionary 
algorithms such as Cultural algorithms [46] in the proposed 
ACS.   

Fig. 7.  Line diagram of the IEEE 30-bus system [36]. 
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The bid curves of four generators and the minimum and 
maximum submitted capacities are given by [36]: 
 

1

1

1 1

1

1

10€ / MWh 50MW P 80MW
20€ / MWh 80MW P 110MW

bid(P ) 30€ / MWh 110MW P 140MW   (27)
40€ / MWh 140MW P 170MW
50€ / MWh 170MW P 200MW

≤ < 
 ≤ <  = ≤ < 
 ≤ < 
 ≤ ≤ 

 

 

2

2

2 2

2

2

10€ / MWh 20MW P 36MW
20€ / MWh 36MW P 52MW

bid(P ) 30€ / MWh 52MW P 68MW     (28)
40€ / MWh 68MW P 84MW
50€ / MWh 84MW P 100MW

≤ < 
 ≤ <= ≤ < 
 ≤ < 
 ≤ < 

  

 
 
Fig. 8. Performance of ACS algorithm in the nominal load of IEEE 30-bus 
test system. 
 

 
TABLE X 

 

3

3

3 3

3

3

10€ / MWh 10MW P 18MW
20€ / MWh 18MW P 26MW

bid(P ) 30€ / MWh 26MW P 34MW      (29)
40€ / MWh 34MW P 42MW
50€ / MWh 42MW P 50MW

≤ < 
 ≤ <= ≤ <
 ≤ <
 ≤ ≤







     

ACS AND SA [36] SETTINGS OF CONTROL VARIABLES FOR IEEE 30-
BUS TEST SYSTEM. 

 
 
 
 
 
 
  
 

4

4

4 4

4

4

10€ / MWh 3MW P 5.4MW
20€ / MWh 5.4MW P 7.8MW

bid(P ) 30€ / MWh 7.8MW P 10.2MW   (30)
40€ / MWh 10.2MW P 12.6MW
50€ / MWh 12.6MW P 15MW

≤ < 
 ≤ <  = ≤ < 
 ≤ < 
 ≤ ≤ 

 

 
 
 
 
 
 

  

Control Variables ACS algorithm SA algorithm 
PG1 (MW) 109 108 
PG2 (MW) 35 35 
PG5 (MW) 25 25 
PG11 (MW) 5 6 

VG1 1.037 1.000 
VG2 1.022 1.020 
VG5 1.012 1.010 
VG11 1.041 1.020 
T6-9 1.00 1.02 
T6-10 0.94 0.98 
T4-12 0.94 1.04 
T27-28 1.02 0.98 

QC1 (MVAr) 0.0 0.0 
QC2 (MVAr) 15.0 7.5 

  
In this study, the following ACS parameters are chosen: M 

= 300, n = 14, m = 150, Q = R = 5,000,000 and the initial best 
solution is estimated at 0.1. The parameter α in (3) from our 
experience shows that any value in the range [0.88, 0.999] 
works well. In this paper it is chosen as α = 0.99. In this study, 
the search will terminate if one of the following criteria is 
satisfied: a) the number of iterations since the last change of 
the best solution is greater than 1000 iterations, or b) the 
number of iterations reaches to 3000 iterations.  

The bus voltages and apparent flows in pu are given in 
Figs. 9 and 10, respectively. The bus voltages are within the 
acceptable voltage range of [0.96, 1.05] as shown in Fig 9. 
According to Fig. 10 all branch apparent flows are much 
lower than the acceptable ranges of 202 MW / 2.02 pu (for 
132 KV lines between buses: 1-2, 1-3, 2-4, 2-5, 2-6, 3-4, 4-6, 
6-28, 5-7, 6-8, 6-7, 8-28) and 30 MW / 0.3 pu (for 33 KV 
lines). 

 
 

The ACS algorithm converges in 2010 iterations (Fig. 8) 
and the final value of objective function (14) is 3050€. The 
final value given by Simulated Annealing (SA) method [36] is 
3141€. An improvement of 91€ is obtained compared to the 
evaluation given by [36]. 

 

The final settings of control variables for ACS and SA are 
given in Table X. It is shown that the generator outputs given 
by ACS algorithm are slightly different from those given by 
SA [36].  

Fig. 9. Bus voltages. 
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